Dipalmitoyl-lecithin: Assignment of the ¹H and ¹³C Nuclear Magnetic **Resonance Spectra, and Conformational Studies**

By N. J. M. Birdsall,* J. Feeney, A. G. Lee, Y. K. Levine, and J. C. Metcalfe, Medical Research Council, Molecular Pharmacology Unit, Medical School, Hills Road, Cambridge CB2 3EF

The ¹³C resonances of the glycerol and choline groups of dipalmitoyl-lecithin in CD₃OD, CDCl₃, and D₂O have been assigned from the ¹⁴N-¹³C and ³¹P-¹³C coupling constants, and proton decoupling studies on the assigned ¹H spectra. Well-defined solvent effects are observed, but the chemical shifts for dipalmitoyl-lecithin in bilayers in D₂O are very similar to the shifts of the corresponding resonances in biological membranes. From an analysis of the ¹H spectrum of the CH₂ multiplet in the CH-CH₂OCOR fragment, the two vicinal coupling constants were extracted and used to calculate rotamer populations from a Karplus treatment. In a high proportion of the molecules of dipalmitoyl-lecithin in CD₃OD and in CDCl₃ the fatty acid chains are arranged gauche to each other, suggesting the presence of strong hydrophobic interactions. From an AA'BB' analysis of the choline -CH2 CH2- fragment in dipalmitoyl-lecithin observed vicinal coupling constants indicate a similar conformation to that found in choline derivatives where an electrostatic interaction between the N+ and the O atoms leads to the conformation being exclusively in the gauche +N/O form.1

RECENTLY measurements have been made of the ¹³C spin lattice relaxation times (T_1) of all the resolved fatty acid chain carbon atoms (1, 2, 3, 14, 15, 16) of dipalmitoyllecithin in micelles in $CDCl_3$ and in bilayers in $D_2O.^2$ The T_1 values provide information about the chain molecular motion which is sensitive to the structural organisation of the lipid molecules. These relaxation measurements are of potential importance in the application of ¹³C n.m.r. to phospholipids in biological membranes, in which ¹³C resonances from specifically enriched phospholipids can be observed.³ A complete description of the relaxation times of the dipalmitoyllecithin carbon nuclei⁴ requires assignment of the glycerol and choline carbon resonances, which cannot be assigned with certainty on the basis of chemical shift comparisons with model compounds. Such assignments can be made by use of selective proton irradiation experiments if the ¹H resonance spectrum of dipalmitoyllecithin has been assigned.

EXPERIMENTAL

The ¹H (220 and 100 MHz) and ¹³C (25·2 MHz) resonance spectra were obtained with Varian HA100D, HR220, and XL100 spectrometers. Selective proton irradiation experiments were carried out with the XL100 Gyrocode and the ¹³C spectra were accumulated by use of the Fourier transform technique. The lock signal was provided by deuterium in the solvent and the ¹³C chemical shifts are expressed in p.p.m. from an external dioxan reference (positive shifts are to high field of the reference).

1,2-sn-Dipalmitoyl-3-phosphatidylcholine (dipalmitoyllecithin), 1,2-sn-dipalmitoylglycerol, and rac-glycerol 3phosphate were from Koch-Light; sn-glycero-3-phosphorylcholine was prepared from egg lecithin by the method of Chadha⁵ and sn-3-phosphatidic acid by the action of cabbage phospholipase D on dipalmitoyl-lecithin.6

RESULTS AND DISCUSSION

Spectral Assignments.—Assignment of the ¹H spectrum of dipalmitoyl-lecithin (1). Figure 1 shows the ¹H

$$\begin{array}{c} \mathsf{Me}[\mathsf{CH}_2]_{12} \cdot \mathsf{CO}_2 \cdot \mathsf{CH}_2 \\ \mathsf{I} \\ \mathsf{Me}[\mathsf{CH}_2]_{12} \cdot \mathsf{CO}_2 \cdot \mathsf{CH} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{CH}_2 \mathsf{O} \cdot \mathsf{P} \cdot \mathsf{O} \cdot \mathsf{CH}_2 \cdot \mathsf{CH}_2 \cdot \mathsf{NMe}_3 \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{I} \end{array}$$

resonance spectrum of dipalmitoyl-lecithin in CD₃OD at 220 MHz. The assignments as indicated on the spectra were made on the basis of chemical shift, coupling constant, and intensity data and supported by homonuclear spin-decoupling experiments. From chemical shift and intensity considerations it is possible to assign directly the terminal alkyl CH₃ (0.90 p.p.m.), the alkyl $[CH_2]_n$ (1·29 p.p.m.), the CH_2CO (2·32 p.p.m.), CHO•COR (5·24 p.p.m.), +NCH₂ (3·63 p.p.m.) and ⁺NMe₃ (3·20 p.p.m.) protons. Spin-decoupling experiments indicate that the low-field single proton (CHO·COR, 5.24 p.p.m.) is coupled to four CH_2 protons in the region 3.9-4.6 p.p.m. which is consistent with these being the glycerol CH₂ protons. One CH₂ group gives a simple eight-line multiplet corresponding to the

⁴ Y. K. Levine, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe, Biochemistry, 1972, 11, 1416.

¹ C. C. J. Culvenor and N. S. Ham, *Chem. Comm.*, 1966, 537. ² J. C. Metcalfe, N. J. M. Birdsall, J. Feeney, A. G. Lee, Y. K. Levine, and P. Partington, *Nature*, 1971, **233**, 199. ³ J. C. Metcalfe, N. J. M. Birdsall, and A. G. Lee, *FEBS Lottane*, 1072, 91, 225

Letters, 1972, 21, 335.

J. S. Chadha, Chem. Phys. Lipids, 1970, 4, 104. ⁶ F. M. Davidson and C. Long, Biochem. J., 1958, 488.

AB part of an ABX type system and these can be assigned to the CH_2OCO glycerol protons because of the

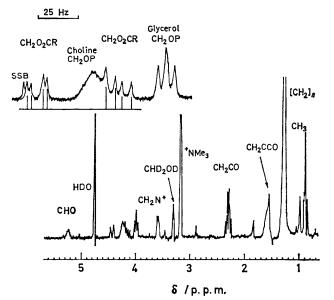


FIGURE 1 220 MHz ¹H spectrum of dipalmitoyl-lecithin in CD₃OD. The insert shows an expanded region illustrating the AB part of the CHCH₂-OCOR ABX type system

absence of ³¹P spin coupling. The CH₂OP glycerol protons resonate at somewhat higher field (4.08 p.p.m.) and are characterised by a ³¹P-¹H spin coupling constant of 6.8 Hz: this is seen clearly in spectra where the CHO·CO proton has been decoupled. The CH₂OP protons are accidentally equivalent which explains the observed doublet (J_{PH} 6.8 Hz) of doublets (J_{HH} 5.8 Hz) with the geminal coupling between the two protons not observed (Figure 1). The remaining resonance (4.25 p.p.m.) is very broad and can be assigned to the choline OCH₂ protons which are expected to be a complex multiplet from spin-spin interactions with their vicinal AA' part of an AA'BB' spin system, the observed vicinal coupling constants being 7.0 and 2.2 Hz. The CH₂CO protons show separate resonances for the two chains. This can be seen clearly in the 220 MHz spectrum where they appear as two overlapping triplets (deceptively simple spectrum). From a detailed analysis of the glycerol CH₂OCO multiplets the geminal and vicinal proton coupling constants were extracted (J_{AB} 11.9 Hz, J_{AX} 7.0 Hz, J_{BX} 3.2 Hz, and δ_{AB} 0.25 p.p.m.).

There was no ambiguity encountered in transferring these assignments to the ¹H resonance spectrum of dipalmitoyl-lecithin in CDCl_a and the results of these

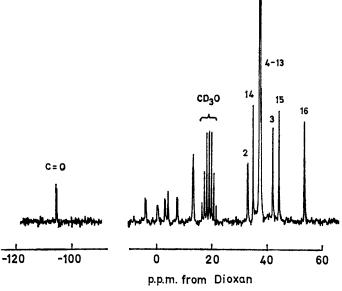


FIGURE 2 25.2 MHz ¹³C spectrum of dipalmitoyl-lecithin in CD₃OD

experiments are summarised in Table 1. The assignments are essentially in agreement with those of Finer

				T.	ABLE 1						
Compound Dipalmitoyl- lecithin		Choline			1	Glycerol		Me	Methyl		
	Solvent CDCl ₃ ^a CD ₃ OD ^a	$\begin{matrix} \overline{\mathrm{Me_{3}N^{+}}} \\ 3\cdot 32 \\ 3\cdot 20 \end{matrix}$	CH ₂ N+ 3.82 3.63 °	CH ₂ O 4·30 4·25 ¢	1-CH2O 4·3 b 4·30 d	CHO 5.15 b 5.24 d,o	3-CH ₂ O 3·93 4·08 •,1	$ \begin{array}{r} 2 \\ 2 \cdot 27, \ 2 \cdot 30 \\ 2 \cdot 32 \end{array} $	$3 \\ 1.58 \\ 1.60$	4–15 1·27 1·29	16 0.88 0.90
1,2-sn-Dipalmitoyl- glycerol	CDCl ₃ a				4·27 ¢	5·10 g	3.74 *	2.34	1.58	1.26	0.89
Dipalmitoyl- <i>sn</i> -3- phosphatidic acid	CDCl ₃ ª				4 ·35	5.24	4 ·02	2.31	1.60	1.28	0.88
sn-Glycero-3- phosphorylcholine	D ₂ O [#]	3.21	3.65	4·30	3.65	3.90	3.90				
Glycerol 3-phos- phate	D ₂ O pD 8.0 i D ₂ O pD 0 i				4·08 4·11	$4.25 \\ 4.45$	$4.25 \\ 4.45$				
Choline bromide	D ₂ O i	3.61	3.90	4.4							

Chemical shifts are expressed in p.p.m. downfield from an internal (a) hexamethyldisiloxane (i) sodium 4,4-dimethyl-4-silapentane-1-sulphonate standard. ^b J_{gem} 12·0, J_{vlo} 7·5, 2·7 Hz, δ_{AB} 0·24 p.p.m. ^c J_{vlo} 7·0, 2·2 Hz. ^d J_{gem} 11·9, J_{vlo} 7·0, 3·2 Hz, δ_{AB} 0·25 p.p.m. ^e $\frac{1}{2}(J_{AX} + J_{BX})$ 5·8 Hz. ^f J_{PH} 6·8 Hz. ^e J_{gem} 11·8, J_{vlo} 5·9, 4·2 Hz, δ_{AB} 0·12 p.p.m. ^h $\frac{1}{2}(J_{AX} + J_{BX})$ 5·2 Hz.

protons, phosphorus, and nitrogen-14 neighbours. The $^+NCH_2$ multiplet, very similar to that found in certain choline derivatives, has been analysed in terms of an 7 E. G. Finer, A. G. Flook, and H. Hauser, *FEBS Letters*, 1971, **18**, 331.

et al.,⁷ but differ substantially from those of Chapman and Morrison.⁸

Assignment of the ¹³C spectrum of dipalmitoyl-lecithin. ⁸ D. Chapman and A. Morrison, J. Biol. Chem., 1966, **241**, 5044. The ¹³C spectrum in CD₃OD recorded at $25 \cdot 2$ MHz under conditions of proton noise decoupling is shown in Figure 2: all six glycerol and choline carbon nuclei are

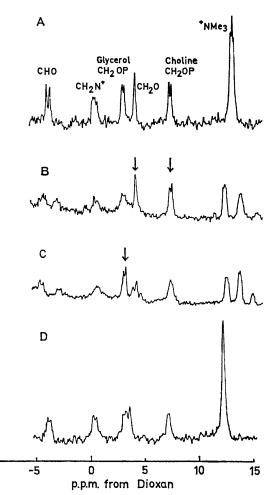


FIGURE 3 A, Glycerol and choline region of the ¹³C spectrum of dipalmitoyl-lecithin in CD₃OD. B, Dipalmitoyl-lecithin in CD₃OD; selective irradiation at δ 4·30 p.p.m. in the ¹H spectrum. The collapsed triplets at 7·7 and 4·4 p.p.m. are indicated by arrows. C, Dipalmitoyl-lecithin in CD₃OD; selective irradiation at δ 4·08 p.p.m. in the ¹H spectrum. The collapsed triplet at 3·0 p.p.m. is indicated by the arrow. D, Glycerol and choline region of the ¹³C spectrum of dipalmitoyl-lecithin in CDCl₃

well resolved and show coupling to ¹⁴N and/or ³¹P nuclei for all except one of the carbon nuclei (Figure 3, A). Examination of the ¹³C spectra of choline bromide, *sn*-glycero-3-phosphorylcholine and *rac*-glycerol 3-phosphate (see Figure 4) allows the ¹⁴N-¹³C and ³¹P-¹³C spin coupling constants in these systems to be characterised and Table 2 contains all the ¹³C coupling constant and chemical shift data for the compounds studied. The ¹³C spectral assignments for all the model compounds considered were confirmed by selective proton decoupling experiments. In choline analogues the ¹⁴N-¹³C spin coupling to carbons at positions α to the nitrogen is 3-4 Hz while for β -carbon atoms the coupling constants are <1 Hz. For *rac*-glycerol 3-phosphate and sn-3-phosphatidic acid the ³¹P-¹³C coupling constants involving the glycerol carbons α and β to the phosphate group are 5-6 Hz and 6-8 Hz respectively, with no observable coupling (<1 Hz) from the phosphorus to the γ glycerol carbon atom. ¹⁴N-¹³C and ³¹P-¹³C coupling constants very similar to the values measured in these model compounds are observed in the spectrum of *sn*-glycero-3-phosphorylcholine, with additional ³¹P coupling to both of the choline methylene carbons, so that the CH₂N⁺ carbon is split by both ³¹P and ¹⁴N into two partially overlapping 1 : 1 : 1 triplets.

The same coupling constants are observed for the glycerol and choline carbons in dipalmitoyl-lecithin in CD_3OD . This allows a preliminary assignment of the $^+NMe_3$, CH_2N^+ , and CHO carbon atoms; the CH_2O ·COR carbon resonance is also assigned because it is the only resonance with no observable coupling. The remaining CH_2OP (glycerol) and CH_2OP (choline) resonances have very similar ³¹P coupling constants and cannot be assigned solely on the basis of the coupling constant data. The $^+NMe_3$ assignment is unequivocal on the basis of intensity, chemical shift, and selective proton decoupling of the ¹³C spectrum.

The partial assignment was confirmed and completed by systematic selective proton decoupling and the

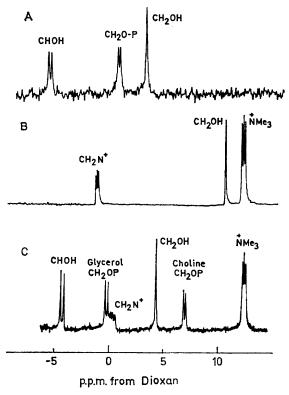
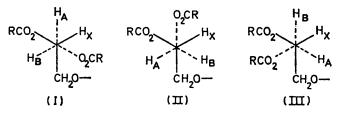


FIGURE 4 A, ¹³C Spectrum of *rac*-glycerol 3-phosphate in D₂O at pD 8; B, ¹³C spectrum of choline bromide in D₂O; C, ¹³C spectrum of *sn*-glycero-3-phosphorylcholine

chemical shifts of the carbon resonances are in Table 2. Irradiation of the proton spectrum at $\delta 4.30$ p.p.m. (CH₂O-COR glycerol and CH₂OP choline protons) causes the collapse of both the CH₂O·COR glycerol ¹³C triplet at 4.4 p.p.m. and the triplet at 7.7 p.p.m. This confirms the assignment of the latter resonance as the CH₂OP choline carbon (Figure 3, B). Similarly, irradiation at δ 4.08 p.p.m. (CH₂OP glycerol proton) collapses the 3.0 p.p.m. ¹³C resonance (Figure 3, C). Thus the internal consistency of the coupling constant data, and the selective and off-resonance proton decoupling experiments, provide an unequivocal assignment of the ¹³C spectrum of dipalmitoyl-lecithin in CD₃OD. Figure 3, D shows the proton noise decoupled ¹³C spectrum at 25.2 MHz of the choline and glycerol carbons of dipalmitoyllecithin in CDCl₃. This spectrum is similar to that of dipalmitoyl-lecithin in CHCl₃ reported by Oldfield and Chapman⁹ in which only the ⁺NMe₃ resonance was magnetic susceptibility will be different from that found in CD₃OD solution in which the dipalmitoyllecithin molecules are in a dispersed form.

Experiments on biological membranes in which ¹³C spectra are observed at natural abundance¹¹ or from specifically labelled nuclei incorporated biosynthetically into membrane phospholipids ³ indicate that the chemical shifts of the ¹³C resonances in the membrane are very similar to those observed in phospholipid bilayers in D_2O . Thus the assignments reported here can be used to assign the spectra of lecithins in membranes.

Conformational Information.-From the analysis of the CH₂O·COR and ⁺NCH₂ multiplets in the ¹H spectrum of dipalmitoyl-lecithin in CD₃OD, vicinal H-H coupling constants can be obtained which provide information


			Choline			Glycerol			Methylene					M . 41 1
Compound Dipalmitoyl-lecithin	Solvent D ₂ O CDCl ₃ CD ₃ OD	C=O -107·4 -106·8 -106·4 -106·3 -106·0	Me ₃ N+ 12·1 12·2 13·4 a	CH ₂ N+ 0·1 0·2 d 0·6 b, d	CH2O 6.7 7.1 7.7 e	1.CH ₂ O 3.0 3.5 4.4	CHO -4.6 -4.1 e -3.7 f	3-CH ₂ O 3-0 3-0 d 3-0 c	$\begin{array}{c} & & & \\ & & & \\ & & & \\ 32 \cdot 0 & 32 \cdot 1 \\ & & & \\ 33 \cdot 1 & 33 \cdot 2 \end{array}$	14 34•3 34•5 35•0	4-13 36·4 36·7 37·3	3 41·4 41·5 42·3	15 43.7 43.7 44.3	Methyl 16 52•5 52•4 53•4
sn-Glycero-3-phosphoryl- choline	D_2O		12·2 a	0•3 b, f	6·9 ¢	4.2	-4·3 <i>1</i>	-0•2 ₫						
Dipalmitoylphosphatidic acid	CDCl ₃	-106.8 -106.4				3.9	— 3·5 ¢	2·6 ₫	3 2· 0 32·1	34•5	36.7	41 •5	43•7	52.4
1,2-sn-Dipalmitoylglycerol Glycerol 3-phosphate	CDCl ₃ D ₂ O pD 8.0 D ₂ O pD 4.3 D ₂ O pD 0	-106.7 -106.3				4·2 3·8 4·0 4·2	-5.7 -5.0f -4.6e -4.2d	5.0 1.4 c 0.2 c 1.3 c	32.0 32.1	34•5	36-8	41.6	4 3·7	52•3
Choline bromide	D_2O		12·5 a	-0·9 b	10.9									

Positive chemical shifts (p.p.m.) are to high field of dioxan external reference. $\sigma J({}^{14}N{}^{-13}C) 4 Hz$. $\delta J({}^{14}N{}^{-13}C) 3 Hz$. $c J({}^{51}P{}^{-13}C) 5 Hz$. $d J({}^{31}P{}^{-13}C) 6 Hz$. $e J({}^{51}P{}^{-13}C) 8 Hz$.

assigned. However, there is no peak in our spectrum at 9.0 p.p.m. The intensities of the peaks in our spectrum account for all the nuclei in the dipalmitoyllecithin structure, the resonances at 3-4 p.p.m. accounting for two carbon nuclei. (A resonance at 9.0 p.p.m. is observed from the CH₂O carbon of ethanol added to CDCl₃.) Dipalmitoyl-lecithin in CDCl₃ exists as micelles containing 60-70 molecules of dipalmitoyl-lecithin¹⁰ and the ¹³C resonances are broader than those of dipalmitoyl-lecithin in CD_3OD . In addition, no ¹⁴N-¹³C coupling is observed: this may be due to removal of the ¹⁴N coupling at the shorter nitrogen T_1 relaxation times which would be expected in the micellar structure. The spectrum was again assigned completely by selective and off-resonance proton-decoupling experiments (Table 2). For dipalmitoyl-lecithin in bilayers in D₂O the resonances of the glycerol carbon atoms are even broader 2,4 and were assigned by comparison with the spectra of dipalmitoyl-lecithin in CDCl₃ and CD₃OD.

Table 2 shows that the chemical shifts depend considerably on the solvent. The observed variations in chemical shift of a given resonance measured from external dioxan are consistent with variations in the local diamagnetic susceptibility in bilayers, in micelles, and in solution. For example, the CH₂ groups of the chains of dipalmitoyl-lecithin in micelles and bilayers exist in a hydrophobic environment where the diaabout the conformation of the glycerol and choline fragments of the molecule.

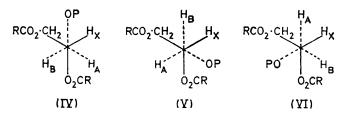
Glycerol fragment. If it is assumed that rotamers (I), (II), and (III) represent the minimum-energy staggered

conformations for rotation about the C-C bond in the CH-CH₂O·COR fragment, then by measuring the averaged vicinal coupling constants J_{AX} and J_{BX} , the fractional populations $P_{(I)}$, $P_{(II)}$, and $P_{(III)}$ can be calculated if values of the vicinal coupling constants in the individual rotamers are known. Abraham and Gatti¹² have studied an extensive series of 1,2-disubstituted ethanes and have obtained estimates for the component vicinal coupling constants in these molecules. Our molecules are substituted propanes but because the electronegativity difference between H and C is not large, we have used their component vicinal coupling constants. It was also shown that the component vicinal coupling constants of the rotamers of X-CH₂CH₂-Y

¹¹ J. D. Robinson, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe, Biochemistry, in the press

^{*} E. Oldfield and D. Chapman, Biochem. Biophys. Res. Comm., 1971, **48**, 949. ¹⁰ O. G. Dervichian, Progr. Biophys. Mol. Biol., 1964, **14**, 263.

¹² R. J. Abraham and G. Gatti, J. Chem. Soc. (B), 1969, 961.


fragments vary linearly with the sum of the electronegativities of X and Y. Using this relationship we have estimated $J_{AX}^{(I)}$ and $J_{BX}^{(I)}$ for rotamer (I). For rotamers (II) and (III) the vicinal coupling constants of trans-2,3-dimethyl-1,4-dioxan¹³ have been used. The electronegativities of an -O- and a -O₂CR group are not sufficiently different to affect these vicinal coupling constants [cf. the H-H coupling constants in 3,3,4,4,5,5hexadeuteriocyclohexyl acetate at -110 °C ¹⁴ and trans-4-t-butyl-3,3,5(axial)-trideuteriocyclohexanol¹⁵]. Thus, by use of the component coupling constants $J_{AX}^{(I)}$ 5.8, $J_{BX}^{(I)}$ 11.7, $J_{AX}^{(II)}$ 11.5, $J_{BX}^{(II)}$ 2.7, $J_{AX}^{(III)}$ 0.6, and $J_{BX}^{(III)}$ 2.7 Hz the observed averaged vicinal coupling constants are given by equations (1) and (2), where

$$J_{AX} = P_{(I)} J_{AX}^{(I)} + P_{(II)} J_{AX}^{(II)} + P_{(III)} J_{AX}^{(III)}$$
(1)
$$J_{BX} = P_{(I)} J_{BX}^{(I)} + P_{(II)} J_{BX}^{(II)} + P_{(III)} J_{BX}^{(III)}$$
(2)

 $P_{(\mathrm{I})} + P_{(\mathrm{II})} + P_{(\mathrm{III})} = 1$, and these equations can be solved to give estimates of the fractional populations. In such an analysis it is not possible to distinguish between rotamers (I) and (II) if H_A and H_B cannot be assigned unambiguously (usually only achieved by selective deuteriation experiments). For dipalmitoyllecithin in CD₃OD with J_{vic} 7.0, 3.2 Hz, the two possible results from this analysis are: $P_{(I)} = 0.06$, $P_{(II)} = 0.56$, $P_{(III)} = 0.38$ $(J_{AX} > J_{BX})$ and $P_{(I)} = 0.48$, $P_{(II)} = 0.4$ 0.01, $P_{(III)} = 0.51 \ (J_{AX} < J_{BX})$, and it is clear that in both analyses rotamer (III), in which the fatty acid chains are in a sterically hindered gauche position, has a large fractional population. For dipalmitoyl-lecithin in CDCl₃, where the molecules are in a micellar form, $J_{\rm vic} = 7.5$, 2.7 Hz, an analysis of these values indicates that the total population of gauche-rotamers (II) and (III) is large: for $J_{AX} > J_{BX}$, $(P_{(II)} + P_{(III)}) = 1.00$ and for $J_{BX} > J_{AX}$, $P_{(II)} + P_{(III)} = 0.47$. An identical analysis of the CH-CH2-O2CR moiety of sn-1,2-dipalmitoylglycerol in CDCl₃ gives $P_{(I)} = 0.17$, $P_{(II)} =$ $0.40, P_{(III)} = 0.43 (J_{AX} > J_{BX}) \text{ and } P_{(I)} = 0.36, P_{(II)} =$ 0.16, $P_{(III)} = 0.48$ ($J_{AX} < J_{BX}$). Hydrophobic interactions between the chains could lead to this unexpected arrangement of the side chains and it is interesting that a gauche arrangement is the most probable conformation in a bilayer structure. Thus the arrangement of the side chains appears to be organized in the correct manner for bilayer formation even when dipalmitoyllecithin is in a dispersed form.

¹³ G. Gatti, A. L. Segre, and C. Morandi, Tetrahedron, 1967, 23, 4385. ¹⁴ F. A. L. Anet, J. Amer. Chem. Soc., 1962, 84, 1053.

For the CH-CH₂OP moiety in dipalmitoyl-lecithin the vicinal H-H coupling constant of 5.8 Hz is equal to $\frac{1}{2}(J_{AX} + J_{BX})$, where J_{AX} and J_{BX} are the averaged vicinal coupling constants. Because H_A and H_B are coincidentally equivalent, J_{AX} and J_{BX} cannot be extracted individually. The coupling constants can also be expressed in terms of the rotamer populations $P_{(IV)}$, $P_{(V)}$, and $P_{(VI)}$, the same component coupling constants being used as in the previous calculations.

The resulting equations (3) and (4) are underdeter-

$$5.8 = 8.7P_{(IV)} + 7.1P_{(V)} + 1.6P_{(VI)}$$
(3)

$$P_{(\mathbf{IV})} + P_{(\mathbf{V})} + P_{(\mathbf{VI})} = \mathbf{1}$$

$$\tag{4}$$

mined for the solution of individual rotamer populations but by inspection $P_{(\nabla I)}$ must be significant, and limits on its value can be made by putting $P_{(I\nabla)} = 0$ and $P_{(\nabla)} = 0$ respectively. The limits of $P_{(VI)}$ are 0.24-0.41: it is surprising that the conformation (VI), in which the phosphate group is gauche to the bulky alkyl chains, is significantly populated.

Choline fragment. An AA'BB' analysis of the +NCH₂ multiplet provides vicinal HH coupling constants in the choline fragment (7.0, 2.2 Hz) which are very similar to those found in acetylcholine perchlorate 16 ($J_{\rm HH}$ 6.9, $J_{\rm HH}$ 2.4 Hz): such coupling constants indicate that the molecules are almost exclusively in the gauche-N+/O conformation. In cholines this conformation is preferred because of the electrostatic interaction between the N⁺ and the electronegative oxygen atom.

We thank The Beit Memorial Trust for a fellowship (to Y. K. L.), King's College, Cambridge, for a fellowship (to A. G. L.), and the S.R.C. for providing the 220 MHz spectra.

[2/067 Received, 13th January, 1972]

¹⁵ W. F. Trager, B. J. Nist, and A. C. Huitric, Tetrahedron Letters, 1965, 2931.

¹⁶ P. Partington, J. Feeney, and A. S. V. Burgen, Mol. Pharm., in the press.